
CHAPTER 8

RELIABILITY TEST PLANNING

INTRODUCTION

This chapter presents the techniques for determining the amount of test expo-
sure required to satisfy previously established program reliability require-
ments. The reader will note that Chapter 7 addresses the topic of reliability
data analysis. There, we assumed that the test data had already been
gathered. We then used the available data to determine point estimates for
reliability parameters and to stipulate the uncertainty associated with these
estimates.

Chapter 8 presents techniques for designing test plans which can verify that
previously specified reliability requirements have been achieved. We realize,
of course, that the required test exposure and/or sample size may exceed the
available resources. In such cases, alternative test plans, consistent with
program constraints, must be developed. In this chapter, we also present
methods which make it possible to clearly identify the inherent risks associ-
ated with a limited test program.

PRIMARY TEST DESIGN PARAMETERS

Upper and Lower Test Values

Two values of system reliability are of particular importance in the design of
a reliability test plan. These are referred to as the upper test and lower
test values. In some cases, only a single value is initially apparent, the
second value being only implied. These two values and the risks associated
with them determine the type and magnitude of testing required.

The upper test value is the hoped for value of the reliability measure. An
upper test MTBF is symbolized as 6., and an upper test reliability is symbol-

ized as R
o“

A test plan is designed so that test systems whose true reli-

ability parameters exceed 0
0

and R
o

will, with high probability, perform

during the test in such a way as to be “accepted. ”

The lower test value is commonly interpreted in two different ways that may
initially appear contradictory. One interpretation is that this lower value
of the reliability measure represents a rejection limit. The other interpre-
tation is that this value is minimally acceptable. The apparent conflict is
resolved by viewing the lower test value as the fine line between the best
rejectable value and the worst acceptable value. A lower test MTBF is symbol-
ized as (3

1’
and a lower test reliability is symbolized as R1“

Systems whose

true reliability parameters having values less than 61 and RI will, with high

probability, perform in such a way as to be “rejected. ”
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The upper and lower test values serve to divide the reliability, or MTBF,
scale into three distinct regions as shown in Figure 8-1. Note that the
region between R

1 and R
o

is neither bad enough to demand rejection nor is it

good enough to demand acceptance. This region is necessary since we will
never precisely know the true reliability of the system.

F I G U R E  8 -  I R E G I O N S D E F I N E D  B Y  R. A N D  R
I

o

“  B A D ” “GOOD”

M A V * Sv *

“x /
R , R. I

T R U E  R E L I A B I L I T Y ,  R

*MAY BE DIFFERENT DEPENDING ON ACTUAL MATURITY.
S E E  F O L L O W I N G  P A R A G R A P H .

The user’ s reliability requirement should be stated as a minimum acceptable
value (MAV) ; that is, the worst level of reliability that the user can tol-
erate and accept. The contractually specified value (SV) is a value somewhat
higher than the MAV. For reliability qualification tests prior to production,
the lower test value is the MAV, and the upper test value is the SV. Earlier
in the development process, fixed configuration tests may be conducted to
demonstrate the attainment of lower levels of reliability at specified mile-
stones. In such cases , upper test and lower test values should be consistent
with the stage of the development process.

In the above paragraphs, we have been discussing population parameter values
only. These values are never known with absolute certainty, so we are forced
to base an evaluation of system performance characteristics on sample data.
Let us conclude this section with a discussion of sample reliability values
and how we can interpret them to aid us in making our system reliability
assessment.

One objective of this chapter is the determination of an accept/reject
criterion for a test to be conducted. As an example, consider the value RT in

Figure 8-2 below. The term ~ is that value of the sample reliability which

corresponds to the maximum allowable number of failures that can occur during
testing and still result in acceptance of the system.

If we test our determined number of articles and find that R is larger
sample

than ~, then we accept the system because there is high probability that the
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sample system(s) come from a population of systems whose true reliability R
exceeds R ~, the minimum acceptable value (MAV) (see Figure 8-1) for this test.

Note that when R is larger thansample ~, we have confidence that the true

reliability exceeds the MAV. We should not interpret this result as an indi-
cation that the contractor has met the SV. Further, if R is smaller

sample
than RT, we will reject the system because there is high probability that the

sample system(s) come from a population whose true reliability R is lower than

‘o  ‘
the SV for this test. Note that when R is smaller than RT, we have

sample
confidence that the true reliability falls short of the SV. We should not
interpret this result as an indication that the MAV has not been met, but
rather that the MAV has not been demonstrated at a sufficiently high level of
confidence.

Consumer’ s Risk (~) and Producer’ s Risk (a)

The consumer’s risk ((3) is the probability of accepting the system if the true
value of the system reliability measure is less than the lower test value. It
can be interpreted in the following ways:

1. $ represents the maximum risk that the true value of the reliability
measure is, in fact, less than the lower test value.

2. From an alternative viewpoint, if the acceptance criterion is met, there
will be at least 100(1-~)% confidence that the true value of the reli-
ability measure equals or exceeds the lower test value.

The producer’ s risk (a) is the probability of rejection if the true value of
the reliability measure is greater than the upper test value. It can be
interpreted in the following ways:

1. The probability of acceptance will be at least (1-a) if the upper test
value is, in fact, met or exceeded.

2. From an alternative viewpoint, if there is a rejection decision, there
will be at least 100(1-cY)% confidence that the true value of the reli-

ability measure is less than the upper test value.

Case study 8-1 illustrates the relationship between ~ and ~.
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Pre- and Post-Test Risk Considerations

Before proceeding on with the application of the consumer’s
risk concept, it is important to understand the contrast that
pre-and post-test risks.

and producer’s
exists between

The Q and ~ risks represent uncertainties that exist in the test planning or
pre-data environment discussed in this chapter. Once data has been gathered
and we have accepted or rejected the system, we find that the risk environment
is altered. For example, we take a sample and decide to accept the system.
At this point the producer’s risk is eliminated; the consumer’ s risk remains
but is less than the maximum that would exist had the sample reliability,
R been exactly equal to RT.sample’

If, on the other hand, R
sample is less than R

T’ ‘“e”
, we reject the system, we

find that the consumer’ s risk is eliminated since there is no risk of ac-
cepting a bad system. Likewise, the producer’ s risk is less than the maximum
that would exist had the sample reliability R been exactly equal to RT.sample

In this chapter, we are concerned with pre-test risks. We determine the
maximum a and ~ risks and then calculate the required test exposure and ac-
ceptable number of failures which will limit our risk to the max:

TEST DESIGN FOR DISCRETE TIME TESTING : BINOMIAL MODEL

mum levels.

Four values

the

the

the

- the

specify the plan for a binomial test. They are:

specified or desired proportion of failures (pO) ,

maximum acceptable proportion of failures (pl) ,

consumer’s risk (~) ,

producer’s risk (a) .

The test plan itself consists of a
(c). The value c represents the
suits in acceptance of the system.

sample size (n) and an acceptance criterion
maximum number of failures which still re-

It is usually not possible to construct a
plan which attains the exact values of a and f3. There are however plans which
attain risks which do not exceed u and P. We shall present methods for de-
termining these types of plans , though in a real world situation, the user and
producer may trade off some protection to achieve other goals .

The following paragraphs present exact and approximate procedures to be used
in planning a Discrete Time-Binomial Model test program. The “exact pro-
cedure” presents the equations used to determine the two values required to
specify a binomial test plan. These equations are presented here for the sake
of completeness. The “approximate solution” procedure, which makes use of the
binomial tables to simplify the procedure, is intended for use by our readers.
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Exact Solution Procedure

The exact procedure for determining test plans for the four values listed
above is to solve the following two inequalities simultaneously for c and n.

n

k=:+$)p; ‘l-pO)n-k < a
—

(8.1)

(8.2)

There are an infinite number of solutions to this pair of inequalities. The
plans of interest are, of course, those which minimize the sample size (n)
required. Solving inequalities 8.1 and 8.2 directly is next to impossible
without the aid of a computer. MIL-STD-105D contains numerous binomial test
plans which may be used for reliability applications. We should point out
that the user unfamiliar with this document will find it difficult to inter-
pret, thus we present the following procedures.

Approximate Solution Procedures

The following so-called approximate procedures utilize the normal and Poisson
distributions to obtain approximate solutions to equations 8.1 and 8.2 and
thereby estimate values of the sample size (n) and the acceptance criterion
(c). After approximate values for these parameters have been obtained, we may
then use the values in conjunction with the binomial tables (Appendix B) and
the previously selected and fixed values of a and P to “fine tune” the aP-
proximate values of n and c.

Test Planning Using Normal Approximation. The normal distribution provides
good approximations for solving inequalities 8.1 and 8.2, especially for
moderate values of p (O. 1 ~ p ~ 0.9). Using this information, we obtain the
approximate solutions for n and c as follows.

n =

c =

Z:(PO-P:) + Z2(P1-P; ) + 2zaz JPOP1(l-PO)(l-P1)
?

(P1-PO)2

z Jnpo(l-po) + npo - 0.5 .a

(8.3)

(8.4)

Generally, the values computed using equations 8.3 and 8.4 are good approxima-

tions for the test plainer. When p. and pl are very small (less than 0.05) ,

the procedure is not recommended. Fine-tuning of the test plan may still re-
quir~ solving the original
producer.

As an example, suppose that
0.85 (pl = O. 15) , while the

inequalities or some bargaining with user and/or

the minimum acceptable reliability of a system is
contractually specified reliability is 0.95 (P. =
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0 . 0 5 ) . Consumer and
For a= 0.11, Za= 1

and z
P

are obtained

tion, we have

n = {(1.225)2(0.

producer risks of 0.11 are required, i.e., a = ~ = 0.11.
.225 and for ~ = 0.11, z = 1.225.

P
(These values of Za

from Appendix B, Table 2.) Using the normal approxima-

0 5 - 0 . 0 0 2 5 )  +  ( 1 . 2 2 5 )2 ( 0 . 1 5 - 0 . 0 2 2 5 )

+ 2(1.225)2~(0.05)  (0.15)(0.95) (0.85)]/(0.15-0.05)2

= 49.6

and

C = 1.225~(49.6) (0.05)(0.95) + (49.6)(0.05) - 0.5

= 3.9 .

The values of n = 49.6 and c = 3.9 are initial approximations. In order to
fine tune the test plan, we round these values to n = 50 and c = 4 and use the
binomial tables (Appendix B, Table 1). For an n of 50 and a c of 4, the
probability of c or fewer failures when p = pl = 0.15 is 0.1121. In addition,

the probability of c or fewer failures when p = p. = 0.05 is 0.8964. Thus ,

for the test using a sample size of 50 with a maximum acceptable number of
failures of 4, the producer’s risk a = 1 - 0.8964 = 0.1036, and the consumer’s
risk ~ = 0.1121. Note that these values were obtained directly from Appendix
B, Table 1. It would, however, have been difficult at best to decide where to
begin looking in the binomial tables without having first used the normal
approximation for guidance.

Test Plaming Using Poisson Approximation. The Poisson distribution also
provides reasonable approximations to inequalities 8.1 and 8.2. All this
amounts to is substituting np for At or t/fl in the Poisson distribution equa-
tion. Consequently, approximate values for n and c are obtained by solving
the following inequalities.

c (npl)ke-npl
z k! 2 P.

k=()

c (npo)ke-npO
z

k=()
k! ?l-a”

Standard test plans and procedures

(8.5)

(8.6)

for the Poisson (exponential) are readily
available and may be used in lieu of solving inequalities 8.5 and 8.6. This
subject is discussed in the “Sources of Exponential Test Plans” section of
this chapter. To use these plans in this context, we let 90 = l/Po, el

 =

l/Pl , n = T, and use the acceptable number of failures as given.
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As an example, suppose that the minimum acceptable reliability of a system is
0 . 9  (pl = O. 1) and the contractually specified reliability is 0.95 (p. =

0 . 0 5 ) . Consumer and producer risks are to be 20%, i.e., ci = f3 = 0.20. To use
the Poisson approximation, we define 00 = I/p. = 1/0.05 = 20 and 01 = I/pl =

1 / 0 . 1  =  1 0 . The discrimination ratio, f30/el, is 2. Note that test plan XIVC

in Appendix B, Table 6, has a and ~ risks of 19.9% and 21.0%, respectively.
This plan requires a test duration T, corresponding to n for this example, of
(7.8)(01) or 78, with five or fewer failures being acceptable.

The term “discrimination ratio” and the use of Appendix B, Table 6, test plans
are discussed in detail in the following section.

Case Studies 8-1, 8-2, and 8-3 demonstrate the development of binomial test
plans for a variety of iY and ~ values.

TEST DESIGN FOR CONTINUOUS TIME TESTING: EXPONENTIAL MODEL

The main feature of test planning for continuously operating systems based on
the exponential distribution is the assumption that the systems have a con-
stant failure rate.

Requirement Interpretation

When the user’s requirement is stated in terms of an MTBF, there is an impli-
cation of a constant failure rate. This does not mean that the system must
have a constant failure rate. It means, instead, that the need remains con-
stant. Figure 8-3 illustrates that the user’s needs may be met during only a
portion of the time during the life of a system.

F I G U R E  8 - 3  U S E R  R E Q U I R E M E N T S  V$ S Y S T E M  P E R F O R M A N C E

I I

I
P E R I O D  W H E N  U S E R S

I
I R E Q U I R E M E N T S  A R E  M E T

SYSTEM

~~ nYwRE
F A I L U R E

R A T E I
~FAILURE  RATE

i I A C C E P T A B L E

I I TO THE USER

I I
I I

S Y S T E M  A G E

Constant System Failure Rate Assumption

The assumption that the system to be tested has a constant failure rate may
not be a good one, but it is a practical necessity for determining
of testing required. In theory, with the constant failure rate
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only the total test exposure is important. That is (in theory), one system
could be tested for the required test exposure, or many systems could be
tested for a short time.

In practice, a test should be planned with a moderate number of systems on
test for a moderate period of time. This makes the test relatively insensi-
tive to the constant failure rate assumption. For example, one organization
recommends that at least three systems be tested for at least three times the
MAV (each) . These are constraints imbedded in the required total test
exposure.

Discrimination Ratio

The discrimination ratio, d = O./O1, is a parameter useful in test planning

for the exponential model. (For the binomial model, it is necessary to con-
sider the upper and lower test values, P. and Pl, explicitly along with the a

and ~ risks. ) An interesting feature of the exponential model is that only
the ratio of the upper and lower test values, d = O./O1, along with the u and

P risks need to be considered. As a consequence, test plans for the ex-

ponential models address explicitly the discrimination ratio as a planning
parameter.

Sources of Exponential Test Plans

There are, numerous methods and references available for developing exponential
test plans. Three such approaches are:

1. MIL-STD 105D and MIL-HBK 108.

2. MIL-STD 781C Test Plans.

3. Poisson Distribution Equations .

Reference to MIL-STD 105D and MIL-HBK 108 is included here solely for the sake
of completeness. It is our intention that the reader become familiar with
methods of exponential test plaming using MIL-STD 781C and the Poisson dis-
tribution equations. These methods are described below. All the necessary
excerps from MIL-ST’D 781C are provided in Appendix B, Tables 6 and 7.

MIL-STD 105D and MIL-HBK 108. MIL-STD 105D is a document devoted primarily to
binomial and Poisson sampling plans, and as such, is mentioned in the previous
section. The Poisson sampling plans may be used for continuous time reli-

ability tests. MIL-HBK 108 is devoted to reliability testing based on the
exponential distribution. However, it is limited in use for our purposes
because it describes test plans for the situation when the test time per unit
on test is preset and the number of units is determined. We iterate here that
these documents are difficult to interpret, and as such, should only be wed
by a person familiar with their content.

MIL-STD 781C. The required excerpts from MIL-STD 781C are provided in Appen-
dix B, Tables 6 and 7. Both
reader to design a test program
following paragraphs detail the

tables provide information which enable the
which addresses established requirements. The
use of both tables.
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Appendix B, Table 6: Exponential Test Plans for Standard Discrimination. . —
Ratios. This table presents information which supports the de-velopment of a
test plan based on discrimination ratios of 1.5, 2.0, and 3.0. For each of
these discrimination ratios, four test plans are provided which attain ap-
proximate u and ~ risks of 10% and 10%, 10% and 20%, 20% and 20%, and 30% and
30%. Figure 8-4, in conjunction with the following example problem, il-

lustrates the use of Appendix B, Table 6. -

I Test
Plan

IXC*

xc

XIC

XIIC

XIVC

u
“WC

XVIC

XVIIC

—

FIGURE 8-4. HOW TO USE APPENDIX B, TABLE 6

— 1 . Identify rows corresponding to the specified “d”.
(If not in Appendix B, Table 6, use Table 7 plans.)

—2 . Identify desired ci and f3 risks.

—3 . Identify test plan number (for refere&ce).

r

4. Identify test duration multiplier.

5. Determine total test time as 61 times multiplier.

6. Identify accept/reject criteria.

L

True
Decision

Risks

a P

12.0% 9.9%

10.9% 21.4%

17.8% 22.4%

9.6% 10.6%

19.9% 21.0%
f

q 9.4% 9.9% I
1 4

10.9% 21.3%

17.5% 19.7%

Discrimination
Ratio O./O1

1.5

1.5

1.5

2 . 0

2 . 0

Test
Duration

Multiplier (M)
T = M(31

4 5 . 0

2 9 . 9

2 1 . 1

1 8 . 8

4
5 . 4

4 . 3

Accept-Reject
Failures

Reject Accept
(Equal (Equal
or More) or Less)

37 36

26 25

18 17

14 13

6 5

6 5

4 3

3 2

*NOTE : C refers to Revision C of MIL-STD-781.

8-9



How To Use Appendix B, Table 6. As an example, suppose that the upper
test MTBF is 900 hours and the lower test MTBF is 300, so that the discrimina-
tion ratio (d) is 900/300 = 3. Consumer and producer risks of approximately
10% for each are required. Now , as shown in Figure 8-4, test plan XVC has 01
and $ risks of 9.4% and 9.9%, respectively, and the discrimination ratio is 3.
Test plan XVC requires a test length (T) of 9.3 times the lower MTBF of 300,
S O T = (9.3)(300) = 2790 hours. The acceptance criterion is to accept with 5
or fewer failures and reject with 6 or more failures. Note that if the upper
test MTBF had been 90 and the lower test MTBF had been 30, the same test plan
is appropriate. However, in this situation the test duration (T) is (9.3)(30)
or 279 hours , whereas the accept/reject criterion remains the same.

Case Study 8-4 is another example illustrating the use of this table.

Appendix B, Table 7: Supplemental Exponential Test Plans. This table
presents information

%
ich supports the development of a test plan based on

combinations of u and risks of 10%, 20%, and 30%. Figure 8-5, in conjunc-

tion with the following example problem, illustrates the use of Appendix B,
Table 7.

How to Use Appendix B, Table 7. Concerning Figure 8-5 and Appendix B,
Table 7, note the following:

If the discrimination ratio, d, is not given exactly in the tables, going to
the next lower value will give a conservative (i.e., longer) test time
requirement.

Consider once again, the example where 00 = 900, 61 = 300, and the desired @

and ~ risks are 10°~ each. Recall that the discrimination ratio was 3. TO
select a test plan from Figure 8-5, we search the column labeled as a 10%
producer’s risk to find the number closest to 3. In this case, test plan IO-6
has a discrimination ratio of 2.94. The test duration is (9.27)(300) or 2781
hours with 5 being the maximum acceptable number of failures. Note how this
plan compares with test plan XVC which has the same acceptance criterion,
requires 2790 hours of test time, and has a discrimination ratio of 3. Case
Study 8-5 further illustrates the use of this table.

Graphical Representation of Test Planning Parameters. Figure 8-6 graph-
ically illustrates the interaction between a and @ risks and test length for
three-commonly used discrimination ratios. The graphs do not provide complete
test plaming information since no acceptance criterion is specified. These
curves are useful tools for conducting tradeoff analyses between risk levels
and test length. Note that some of the specific test plans presented in
Appendix B, Tables 6 and 7 are displayed on the curves, i.e., 30-7, 1O-19,
20-7, etc.

To illustrate how the graphs may be used, consider that 01 = 100 hours, 00 

=

150 hours, and a test duration of 2500 hours is affordable. To enter the
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FIGURE 8-5. HOW TO USE APPENDIX B, TABLE 7

1. Identify desired ~ risk (10% f3 risk table
shown below).

L

2. Identify column for desired a risk.

3. Identify row for d.

4. Identify test plan number (for reference).r 5. Identify total test time multiplier.

—

6. Determine total test time as 01 times multiplier.

—7. Identify accept/reject criteria.

i1

Test
Plan
No’s

1o-1

1 0 - 2

1 0 - 3

1 0 - 4

1 0 - 5

a
1 0 - 7

1 0 - 8

10-9

1o-1o

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

No. Failures Test Duration
Multiplier (M)

Ace. Rej. T=MO
1

0 It 2.30

1 2 I 3.89

2 3 I 5.32

3 4 I 6.68

4

5. :Iu
6 7 10.53

7 8 11.77

8 9 12.99

9 10 14.21

1 0 11 15.41

11 12 16.60

12 13 17.78

13 14 18.96

14 15 20.13

15 16 21.29

16 17 22.45

17 18 23.61

18 19 24.75

19 20 25.90

8-11

6.46

3.54

2.78

2.42

2.20

2.05

1.95

1.86

1.80

1.75

1.70

1.66

1.63

1.60

1.58

1.56

1.54

1.52

1.50

1.48

10.32

4.72

3.47

2.91

2.59

2.38

2.22

2.11

2.02

1.95

1.89

1.84

1.79

1.75

1.72

1.69

1.67

1.62

1.62

1.60

l—

21.85

7.32

4.83

3.83

3.29

m
2.70

2.53

2.39

2.28

2.19

2.12

2.06

2.00

1.95

1.91

1.87

1.84

1.81

1.78
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graphs, use d = 6./01 = 150/100 = 1.5 and T/Ol = 2500/100 = 25. Reading up

through the three curves , we find the following risk combinations:

a =  0 . 3 0 $ =  0 . 1 0

c1 =  0 . 2 0 P =  0 . 1 6

cl = 0 . 1 0 P = 0.26

If one of these combinations is tolerable, the test length is adequate. To
reduce one or both risks, the test duration must be increased. Tolerating
greater risks permits reduction of the test duration. Case Study 8-6 further
illustrates the use of these graphs.

Figure 8-7 is a graphical portrayal of the interaction between test length and
risk when ci and P risks are equal. Curves for each of the three values (1.5,
2.0, 3.0) of the discrimination ratio appear on the same graph. Case Study
8-6 illustrates the use of Figure 8-7.

Poisson Distribution Equations. When a standard test plan for a specific com-
bination of 9.,01, a, and @ is not available, the test designer may use the

Poisson equations to develop a test plan.

The following notation is used in the discussion of the Poisson equation
technique.

T = Total test exposure

6 = True MTBF

c = Maximum acceptable number of failures

filo = Upper test MTBF

‘1
= Lower test MTBF

a= Producer’s risk

13 = Consumer’s risk

P(aclO) = Probability of accepting the system assuming the true MTBF is
6.

P(rej e) = Probability of rejecting the system assuming the true MTBF is
e.

The probability of acceptance is the probability that no more than a certain
(acceptable) number of failures will occur. This probability can be computed
using the equation:

~T,e)ke-(T/@
P(aclO) = :

k=O
k!

8-13
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This is the Poisson Distribution Equation. This distribution and assumptions
regarding its applications are discussed in Chapter 5.

The consumer’s risk (~) is the probability that during the test no more than
the acceptable number of failures will occur when the true MTBF is 0

1“
Conse-

quently,

~=P(ac 9=01)

= P(c or fewer failures $=61) ,

where c is the maximum acceptable number of failures. Thus ,

c (T/O1)k e-(T/O1)
f3=z k! . (8.8)

k=o

The producer’s risk (a) is the probability that during the test more than the
acceptable number of failures will occur when the true MTBF is (3

o“
Conse-

quently,

u = P(rej (3=8.)

= P(c + 1 or more failures 6=0.) .

Since

P(c + 1 or more failures e=~o) = I - P(c or fewer failures e=flo) ,

we have that

c (T/90)ke-(T/00)
(Y = l-z

k=O
k!’

or equivalently,

c (T/Oo)ke-(T’gO)
l-a=z

k-O
k! (8.9)

In order to determine the complete test plan, we must solve equations 8.8 and
8.9 simultaneously for T and c.

Solving these equations directly without the aid of a computer is too tedious
and time consuming to be considered practical. We therefore present the fol-
lowing graphical solution procedure which utilizes the Poisson Chart, Chart
No. 1 in Appendix B.
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Graphical Poisson Solution Procedure. we wish to find a test exposure,
T, and an acceptable number of failures, c, such that the probability of
acceptance is ~ when 0 = 91 and I - a when 9 = f3

0“
This is done graphically

with the use of a transparent overlay.

On an overlay sheet, draw vertical lines at 6/T = 1 and t3/T = f30/61. Draw

horizontal lines at probabilities ~ and 1 - a, forming a rectangle. Slide the
,overlay rectangle horizontally until a curve for a single value of c passes
through the lower left and upper right corners. (It may not be possible to
hit the corners exactly. Conservative values of c will have curves that pass
through the horizontal lines of the rectangle. ) This value of c is the ac-
ceptable number of failures. Read the value of 0/T corresponding to the left
side of the rectangle. Divide 01 by this value to find T, the required test

exposure. The following numerical example illustrates the use of the graph-
ica~ ~~olsson Solution Procedure.

We wish to find the required test exposure, T, and acceptable number of fail-
ures c; such that when the MTBF, O = el = 100 hours, the probability of ac -

ceptance, ~, will be 0.20 and then El = f30 = 300 hours the probability of

acceptance, 1 - a, will be 0.90.

An overlay rectangle is constructed as shown.

FIGURE 8-a OVERLAY CONSTRUCTION TECHNIQUE

(?T
I * O 3.G

Sli ~ :.g the rectangle to’ the left, we find that when c = 3 the fit is close,
but .,; . i.ghtly higher risks must be tolerated. Going to c = 4, the curve passes
thr. .h the horizontal lines of the rectangle. At the left of the rectangle,
0/3’” “:. i4, so the required test exposure is approximately 100/0. 14 = 714
hours and the acceptance criterion is 4 or fewer failures.
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F I G U R E  8 - 9  O V E R L A Y C U R V E  M A T C H I N G P R O C E D U R E

OPERATING CHARACTERISTIC (OC) CURVES

Introduction

In the previous sections of this chapter, we have discussed methods for de-
veloping test plans which achieve required ~ and ~ risks. The test plan
itself is specified by the test exposure and the maximm acceptable number of
failures. For a test plan developed using the methods in this chapter, we
know that the producer’ s risk (the probability of rejecting a good system) for
the specified value (SV) is (Y and the consumer’ s risk (the probability of
acceptance) for the minimum acceptable value (MAV) is ~. In addition, to
assess a test plan proposed by another party, we have shown methods for com-
puting the producer’s risk and the consumer’s risk for the SV and MAV, re-
spectively. A graphical tool which provides more complete information about a
specific test plan is the operating characteristic (OC) curve. The OC curve
displays both acceptance and rejection risks associated with all possible
values of the reliability parameter and not merely the SV and MAV. By def-
inition, an OC curve is a plot of the— probability of acceptance (the ordinate)— —.
versus the reliability parameter value (the abscissa) ..—

Figure 8-10 contains the operating OC curve for test plan XVICC from MIL-
STD 781C, with (31, the lower test MTBF, assumed to be 100 hours.

Consider a single point on the curve, say an MTBF of 200 hours and a prob-
ability of acceptance of 0.63. This means that for test plan XVIIC (test
duration of 430 hours, accept with 2 or fewer failures) , a system which has a
true MTBF of 200 hours has a 63% chance of passing this test, i.e. , being
accepted. A system requires an MTBF of around 400 hours in order for the
producer to be at least 90% confident that the system will be accepted. A
system whose true MTBF is about 80 hours has only a 10% chance of being ac-
cepted.
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F I G U R E  8 - 1 0  O P E R A T I N G  C H A R A C T E R  tSTIC (OC) C U R V E

1.0

. 9

.8

.2

.1

c1

A C C E P T  W I T H  2  O R  F E W E R  F A I L U R E S

( T E S T  P L A N  XVIIC, M I  L-STD 781C)

o I 00 2 0 0 3 0 0 4 0 0 5 0 0

MT8F, H O U R S

F O R  T H I S  E X A M P L E  8T I S  A S S U M E D  T O  E Q U A L  100 HOURs

Operating characteristic curves for all the test plans in Appendix B, Table 6
of this text can be found in Appendix C of MIL-STD 781C. However, OC curves

for the test plans in Appendix B, Table 7, of this text are not available in

MIL-STD 781C.

OC Curve Construction

The OC curve shown in Figure 8-10 is a representation of the mathematical

model used to compute the reliability for a system. We have discussed two
basic models in previous sections . The Poisson/exponential model 1s used for

systems undergoing continuous time testing and the binomial model is used for
discrete time tests.

The OC curve specifically displays the relationship between the probability of
acceptance and MTBF.
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For the Poisson/exponential model, we indicated in equation 8.7 that

IP(ac 0) = J
(T/O)k e-(T’O)

k=o
k!

where

k = Number of failures

T = Total test time

O = Values of MTBF

c = Maximum acceptable number of failures

Referring to Figure 8-10, let

selected test plan XVIIC from
two failures. Using 01 = 100

430 hours for test plan XVIIC

on the curve by calculating P(ac El) for different values of 0. As
for e= 215 hours

(8.10)

us assume that 01 = 100 hours and that we have

Appendix B, Table 6 which permits a maximum of
hours , which corresponds to a test duration of

(T = 4.301), and c = 2, we can determine points

o -2
=2e ~ 21e-2 + 22e-2—  —  —

o 1 2

= 0.135 + 2(0.135) + 2(0.135)

= 0.676 .

By choosing a sufficient number of values for 0 between O and 500
ing the probability of

For the binomial model,
equation

an example,

and comput-
acceptance for each, we can construct a smooth curve.

the probability of acceptance is expressed by the

IP(ac p) = ; (n)
~_. kpk(l-p)n-k

;
n! k n-k=

k=o [k! (n-k)!] P (l-P)

where

n = Number of trials
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c = Maximum acceptable number of failures

p = Probability of failure on any trial.

By inserting specific values for n, k and by varying the probability of fail-
ure on any trial, p, we can compute values of the probability of acceptance
which permit us to construct an OC curve.

For example, by letting n = 5 and c = 2, calculate the probability of accept-
ance for p = 0.1.

P(ac p=O.1) = 5!0! (5-())! (0.1)0(1-0.1)5-0+  &:l)! (0.1)1(1-0.1)5-1

5!
+ 2! (5-2)! (0.1)2(1-0.1)5-2

_ (120)(1)(0.9)5 + (120)(0.1)(0.9)4+ (120)~:j@~~(0.9)3—
120 24

=  ( 0 . 9 )5  +  (0.5)(0.9)4+  ( 0 . 1 ) ( 0 . 9 )3

=  0 . 5 9  +  0 . 3 3  +  0 . 0 7  =  0 . 9 9 .

Thus ,

P(ac p=O.1) = 0.99 .

As expected, the probability of acceptance is very high since we have designed
a relative easy test to pass.
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CASE STUDY NO. 8-1

Background

A mechanical system which controls the aiming point of a large-caliber gun is
under development. The specified and minimum acceptable values for the prob-
ability of aiming correctly are 0.85 and 0.70 respectively. Testing requires
that expensive projectiles be fired for each trial, and only 20 rounds are
allotted for testing.

Determine

1. Propose a test plan which equalizes the consumer’s and producer’s risks.
What are the risks?

2. The user can tolerate a risk of no worse than 5%. What test plan gives
the best (smallest) producer’s risk?

Solutions

1. As mentioned in Chapter 6, “Statistical Concepts”, consumer’ s risk in-
creases when producer’s risk decreases, and vice versa, when the sample size
is fixed. Theoretically, there is a point where they are equal or almost
equal.

It is also important to understand that the analytical interpretation of pro-
ducer’ s and consumer’ s risk when determining the solution to question no. 1.
The producer’ s risk is the probability of rejecting a system which meets the
SV of 0.15 proportion of failures (reliability of 0.85). For a given accept/
reject criterion (determined by a value c which represents the maximum number
of failures which results in acceptance of the system) , the producer’ s risk,
Ci, is the probability that c + 1 or more failures occur. The consumer’s riks
is the probability of accepting a system which exceeds the MAV of 0.30 propor-
tion of failures (reliability of 0.70) . For the same accept/reject criterion,
the consumer’ s risk, ~, is the probability that c or fewer failures occur.
Below is a section of binomial tables for n = 20, extracted from Appendix B,
Table 1.

p. ~-(-y = ~.

P(c or fewer failures) P(c or fewer failures) P(c+l or more failures)
Pl = 0.30 Po = 0.15c

p. = 0.15
—

o 0 . 0 0 0 . 0 4 0 . 9 6
1 0 . 0 0 0 . 1 8 0 . 8 2
2 0 . 0 3 0 . 4 0 0 . 6 0
3 0 . 1 1 0 . 6 5 0 . 3 5

J4 0.24 0.83 0.17 I

5 0.42 0.93 0.07
6 0.61 0.98 0.02
7 0.77 0.99 0.01
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The proposed test plan is to accept with 4 or fewer failures and reject with 5
or more failures. The consumer’s and producer’s risks are 0.24 and 0.17,
respectively.

2. From the above table, we see that test plans which have the maximum
acceptable number of failures (c) of O, 1, and 2, and satisfy the consumer’s
risk of no more than 5%. The best (smallest) producer’ s risk occurs when
c = 2, the risk being 0.60.
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CASE STUDY NO. 8-2

Background

A new, highly reliable missile system is under development. The specified
reliability (SV) is 0.98, and the minimum acceptable reliability (MAV) is
0.85.

Determine

1. Design test plans for producer’ s risks of 5%, 10%, and 20%, with a con-
sumer’s risk of 5%.

2 . Design test plans for a producer’ s risk of 10% and for a consumer’s risk
of 10%.

3. Redo number 2 if the MAV is 0.92 instead of 0.85.

Solutions

Note that a reliability of 0.98 corresponds to a proportion of failures, or
unreliability, of 0.02, and a reliability of 0.85 corresponds to a proportion
of failures, or unreliability, of 0.15. Thus , we list our test planning
parameters p. and pl as 0.02 and 0.15, respectively.

la. P. = 0.0? pl = 0.15 ~ = 0.05 p = 0.05

i. Normal Approximation. In order to determine a starting point for
our analysis, we calculate approximate values of n and c using
equations 8.3 and 8.4. For values of Za and z

P’
use Appendix B,

Table 2.

n = {(1.645)2(0.02-0.0004) + (1.645)2(0.15-0.0225)

+ 2(1.645)2

~(0-02) (0.15 )(0.98 )(0.85 )}/(0.15-O- 02)2

= 39.6

c = (1.645) ~(39.6) (0.02)(0.98) + (39.6)(0.02) - 0.5

= 1.7
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ii. Poisson Approximation (Appendix B, Chart 1, with np = T/El, the
reciprocal of #/T)

np
c 1. n—

np
o l-a c1—

o 3.0 20.0 0.40 0.05 0.69 0.32
1 4.7 34.3 0.63 0.06 0.88 0.12

2 6.3 42.0 0.84 0.05 0.94 0.06

3 7.8 52.0 1.04 0.05 0.97 0.03

NOTE : a = P(c + 1 or more failures)
f3 = P(c or fewer failures)

l-a = P(c or fewer failures)

iii. Proposed Test Plans. It appears from i and ii above that a good
starting point for fine tuning is an n of 40 and c of 2. Using
Appendix B, Table 1 to fine tune, we propose the following test
plans.

n c c1. — — P

40 2 0.04 0.05
39 2 0.04 0.05
38 2 0.04 0.06
37 2 0.04 0.07

~’ 36 2 0.03 0.08

x
The protection afforded by this plan seems to be adequate though the
consumer’s risk is 8% (slightly above the required 5%).

lb. Po = 0.02 PI = 0.15 U=O.1O p = 0.05

i. Normal Approximation

n = {(1.28)2(0.02-0.0004) + (1.645)2(0.15-0,0225)

+ 2(1.28)(1.645) ~(0.02) (0.15)(0.98)(085) ]/(0.15-0.02)2

= 34.8

c = (1.28) ~(34.8) (0.02)(0.98) + (34.8)(0.02) - 0.5

= 1.3
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ii. Poisson Approximation (Appendix B, Chart 1)

np
c 1

np
n o E—l-a a. — —

0 3.0 20.0 0.40 0.05 0.69 0.31

11 4+7 34.3 0.63 0.05 0.88 0.12 I

2 6.3 42.0 0.84 0.05 0.94 0.06
3 7.8 52.0 1.04 0.05 0.97 0.03

iii. It appears that a good starting point for fine tuning is an n of 35
and c of 1. The following test plans are proposed.

n c Ci— — — J?

35 1 0.15 0.03
34 1 0.15 0.03
33 1 0.14 0.03
32 1 0.13 0.04
31 1 0.13 0.04
30 1 0.12 0.05
29 1 0.11 0.05

*I 28 1 0.11 0.06 1
‘The actual risks exceed the required risks of 10% and 5% but not to
any significant extent.

l.c. PO = 0.02 pl = 0.15 a =  0 . 2 0 p =  0 . 0 5

i. Normal Approximation

n = {(0.84)2(0.02-0.0004) + (1.645)2(0.15-0.0225)

+ 2(0.84)(1.645) ~(0.02j (0.15)(0.98)(0.85) )/(0.15-0.02)2

= 29.4

c = (0.84) ~(29.4)(0.02)(0.98) + (29.4)(0.02) -0.5

= 0.72

ii. Poisson Approximation (Appendix B, Chart 1)

np ~
c

np o
n P—l-a a— — —

0 3.0 2.0 0.40 0.05 0.69 0.31

I 1 4.7 34.3 0.63 0.05 0.88 0.12
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iii. It appears that a good starting point for fine tuning is an n of 25
and c of 1. The following programs are proposed.

n c a— — — @

* 25 1 0.09 0.09

2 5 0 0 . 4 0 0 . 0 2

$’Generally, there is no reasonable test plan for the input values
given. A very large sample size is required to achieve an Q’ of
0.20. (For n = 40, a = 0.19, and @ = 0.01, with a c of O.) This
sample size seems unwarranted. Our recommendation is to use the n
of 25 and the c of 1.

2. PO = 0.02 PI = 0.15 ~=o.lo p = 0.10

i. Normal Approximation

n = {(1.28)2(0.02-0.0004) + (1.28)2(0.15-0.0225)

+ 2(1.28)2
~(0.02) (0.15 )(0.98 )(0.85 )]/(0.15-0.02)2

= 24.2

C=(

= o

.28) ~(24.2) (0.02)(0.98) + (24.2)(0.02) - 0.5

86

ii. Poisson Approximation (Appendix B, Chart 1)

np
c 1

npon “E —l-a a— — —

o 2.3 15.3 0.31 0.10 0.74 0.26

1 3.9 26.0 0.52 0+10 0.90” 0.10 I
2 5.2 35.0 0.70 0.10 0.96 0.04

iii. It appears that a good starting point for fine tuning is an n of 25
and c of 1. The following programs are proposed.

n c a— — — E

‘$ 25 1 0.09 0.09 I
24 1 0.08 0.11

+<

The test plans with a sample size of 25 fits well. The sample size
can be reduced by 1 to 24 if the consumer allows his risk to be 11%.
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3.

i.

ii.

iii.

P*  = 0-02 PI = 0.08 a=o.lo (i=o.lo

Normal Approximation

n= {(1.28)2(0.02-0.0004) + (1.28)2(0.08-0.0064)

+ 2(1.28)2 ~(0.02)(0.08)(0.98)(0.92)]/(0.08-0  .02)2

= 77.0

C  =  ( 1 . 2 8 )  ~(77 .0)(0.02)(0.98)  +  (77.o)(o-02)  -  0 - 5

=  2 . 6

Poisson Approximation (Appendix B, Chart 1)

np
c 1

np
n o P—l-a 0’. — —

1 3.9 48.8 0.87 0.10 0.75 0.25
2 5.3 66.3 1.32 0.10 0.88 0.12

3 6.7 83.8 1.67 0.10 0.91 0.09

4 8.0 1 0 0 . 0 2 . 0 0 0 . 1 0 0 . 9 4 0 . 0 6

It appears that a good starting point for fine tuning is an n of 75
and c of 3. The following programs are proposed.

n c c1 E— — —

75 3 0.06 0.14
76 3 0.07 0.13
77 3 0.07 0.13
78 3 0.07 0.13
79 3 0.07. 0.11

80 3 0.08 0.10
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CASE STUDY NO. 8-3

Background

An operational test is being
must work for at least three
ability of 0.85 and a minimum

considered for a disposable survival ratio which
hours. The ratio has a specified mission reli-
acceptable mission reliability of 0.7. A number

of radios will be put on test for-three hours each and the-number of failures
recorded.

Determine

1 . Propose some test plans for a producer’s risk of about 10% and consumer’s
risks of about 10%, 20%, and 30%.

2. Propose a test plan for a minimum acceptable reliability of 0.5 with a
user risk of 2% and a producer risk of 20%.

Solutions

Note that a reliability of 0.85 corresponds to a proportion of failures or
“unreliability” p. of 0.15.

la. Po = 0 . 1 5 PI =  0 . 3 Ci=o.lo fl=o.lo

i. Normal Approximation

n = {(1.28)2(0.15-0.0225) + (1.28)2(0.3-0.09)

+ 2(1.28)2

{(0.15)(0.3)(0.85)(0.7)]/(0.3-0. 15)2

= 48.4

C= 1.28 ~(48.4) (0.15)(0.85) + (48.4)(0.15) - 0.5

= 9.9

ii. Poisson Approximation (Appendix B, Chart 1)

np
c 1 np

n o P_l-ci— 0!—

7 12.0 40.0 6.o 0.10 0.75 0.25
8 13.0 43.3 6.5 0.10 0.80 0.20
9 14.0 46.7 7 . 0 0 . 1 0 0 . 8 3 0 . 1 7

1 0 1 5 . 5 5 1 . 7 7 . 7 0 . 1 0 0 . 8 5 0 . 1 5

11 16.5 55.0 8.2 0.10 0.88 0.12
12 18.0 60.0 9.0 0.10 0.89 0.11
13 19.0 63.0 9.5 0.10 0.90 0.10
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iii. It appears that a good starting point for fine tuning is an n of 50
and c of 10. The following programs are proposed.

n c a— — — E

5 0 1 0 0 . 1 2 0 . 0 8
4 9 1 0 0 . 1 1 0 . 0 9

! 48 10 0.10 0.10 I

lb. P. = 0.15 pl =0.3 a= 0.10 p= 0.20

i. Normal Approximation

n = { ( 1 . 2 8 )2 ( 0 . 1 5 - 0 . 0 2 2 5 )  +  ( 0 . 8 4 )2 ( 0 . 3 - 0 . 0 9 )

+  2 ( 0 . 8 4 ) ( 1 . 2 8 )  ~(0.15)(0.3)(0.85)(0.7)}/  ( 0 . 3 - 0 . 1 5 )2

= 31.5

C  =  ( 1 . 2 8 )  ~(31 .5)(0.15)(0.85)  +  ( 3 1 . 3 ) ( 0 . 1 5 )  -  0.5

= 6.78

ii. Poisson Approximation (Appendix B, Chart 1)

np
c 1— n—

np
o f! l-a o!—

6 9.1 30.7 4.6 0.20 0.82 0.18

7 10.3 34.3 5.1 0.20 Q.85 0.15 1

8 11.5 38.3 5.7 0.20 0.88 0.12
9 12.5 41.7 6.3 0.20 0.90 0.10

10 13.8 46.o 6.9 0.95 0.20 0.05

iii. It appears that a good starting point for fine tuning is an n of 35
and c of 7. The following programs are proposed.

35 7 0.14 0.13
34 7 0.12 0.16
33 7 0.11 0.19

I 32 7 0 . 1 0 0 . 2 1  I
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l.c. P. = 0 . 1 5 PI =  0 . 3 0 ~=().1() p =  0 . 3 0

2 .

i. Normal Approximation

n = {(1.28)2(0.15-0.0225) + (0.526)2(0.3-0.09)

+ 2(0.526)(1.28) ~(O. 15) (0.3)(0.85)(0.7) ]/(0.3-0.15)2

= 21.7

C  =  ( 1 . 2 8 )  ~(21 .7)(0.15)(0.85)  +  ( 2 1 . 7 ) ( 0 . 1 5 )  -  0.5

=  4 . 9

ii. Poisson Approximation (Appendix B, Chart 1)

npc 1— n—
np o l-a

4 5.9 19.7 2.9 0.30 0.82 0.18

~5 7 . 0 2 3 . 3 3 . 5 0 . 3 0 0 . 8 7 0 . 1 3 J

6 8 . 4 2 8 . 0 4 . 2 0 . 3 0 0 . 8 9 0 . 1 1

iii. It appears that a good starting point for fine tuning is an n of 22
and c of 5. The following programs are proposed.

2 2 5 0 . 1 0 0 . 3 1 1

2 3 5 0 . 1 2 0 . 2 7

Po = 0 . 1 5 PI = 0.5 a = 0.20 p =  0 . 0 2

i. Normal Approximation

n = {(0.84)2(0.15-0.0225) + (2.06)2(0.5-0-25)

+ 2(0.84)(2.06) ~(0.15)(0.5)(0.85)(0.5)}/  (0.5-0.15)2

= 14.4

C  =  ( 0 . 8 4 )  ~(14.4) (0.15)(0.85) +  (14.4)(o.15)  -  0.5

=  2 . 8
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ii. Poisson Approximation (Appendix B,

npc 1
np

n o— —

Chart 6)

E—1-CY c1—

2 7.5 1 5 . 0 2 . 2 5 0 . 0 2 0 . 6 3 0 . 3 7

3 9 . 1 1 8 . 2 2 . 7 0 0 . 0 2 0 . 7 3 0 . 2 7

4 1 0 . 6 2 1 . 2 3 . 2 0 0 . 0 2 0 . 8 0 0 . 2 0

iii. It appears that a good starting point for fine tuning is an n of 15
and c of 3. The following programs are proposed.

n c CY— — — 1?

t 15 3 0 . 1 8 0 . 0 2  I

14 3 0.16 0.03
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CASE STUDY NO. 8-4

Background

A communication system has minimum acceptable value (MAV) of 100 hrs MTBF, and
a specified value (SV) of 150 hrs MTBF.

Determine

How many hours of test are required for design qualification prior to a pro-
duction decision if we desire a and ~ risks of 10% each?

Solution

In this case, a “standard” test plan may be selected from Appendix B, Table 6.
Test plan IXC satisfies these inputs. The required test duration is

T = (45.0)(01) = (45.0)(100) = 4500 hrs.

The accept/reject criterion for this test plan is to accept if we encounter 36
or fewer failures. Bear in mind though, that the acceptance criteria may
require violation, depending on the nature of the failures and the verifica-
tion of corrective action.

Commentary

1. In order to make the test less sensitive to the constant failure rate
assumption, it would be desirable to have at least 3 systems tested for at
least 3(100) = 300 hours each. The remainder of the 4500 hours may be satis-
fied with these or other systems. See section entitled “Constant Failure Rate
Assumption” for a discussion of this topic.

2. The test duration of 4500 hours is very long! (The equivalent of 187.5
24-hour days). Putting more systems on test will reduce the calendar time
requirement, but 4500 hours of test exposure are still required. The required
test exposure is high because of the low discrimination ratio, d, and the
relatively low CY and ~ risks. Plans with higher risks may be worth considera-
tion to see how much the amount of testing may be reduced.

8-32



CASE STUDY NO. 8-5

Background

An air defense system has a minimum acceptable value (MAV) of 80 hours MTBF
and a specified value (SV) of 220.

Determine

How many hours of testing are required to give the
needs have been met? The producer requires 90%
will be accepted if it meets the SV.

Solution

user 80% assurance that his
assurance that his product

The 80% user assurance is equivalent to a consumer’s risk of $ = 0.20, and the
90% contractor assurance is equivalent to a producer’s risk of ~ = 0.10.

60
=220, 81=80, d=~= 2.75.

Because the discrimination ratio is 2.75, the “standard” test plans from
Appendix B, Table 6, cannot be used. Appendix B, Table 7, will be considered.

For the 20% $ risk, and entering the 10% CY risk column, we find a discrimina-
tion ratio of 2.76 available, which is very close to 2.75. This is test plan
number 20-5. The required test duration is

T = (6.72)(01) = (6.72)(80) = 537.6 hrs.

The accept/reject criterion is to accept with 4 or fewer failures.
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CASE STUDY NO. 8-6

Background

A radar system is
sentially a fixed

under development. A test is to be run which will be es-
configuration test. At this stage of development, an MTBF

of 200 hours is planned; but assurance is desired ~hat the MTBF is not lower
than 100 hours. For cost and schedule reasons, a test exposure of 300 hours
has been proposed.

Determine

Is this amount of test exposure adequate? If not, what is an adequate amount
of testing?

Solution

The upper test value, 00, is 200, and the lower test value,
exposure, T, is 300 hrs.

For a quick and simple look at the adequacy of the proposed

0 ~, is 100. Test

test, we will use
Figure 8-7. (For the convenience of the reader, the graphs in Figures 8-6 and
8-7 have been reproduced and annotated below.) Entering Figure 8.7 with T/61

= 300/100 = 3 and d = 90/el = 200/100 = 2, we find that the proposed test

exposure results in risks slightly above 30%. The amount of testing proposed
is minimally adequate for this stage in the program.

We may use Figure 8-7 to determine an adequate test duration. At about 580
hours, a = $ = 0.25. At about 900 hours, a = ~ = 0.20. At about 2000 hours,
~ = p = ().10. At 580 hours, the risks are fairly high. A ~ risk of 25% is
perhaps tolerable, but an a risk of 25% means a 25% chance of an erroneous
“back to the drawing board” decision.

A test duration of about 900 hours looks reasonable, particularly if we reduce
~ by letting ~ increase. To investigate this possibility, we may use
Figure 8-6. From the graph for d = 2, we find that test plan 30-8 with
a = 0.10, $ = 0.30 and T = 981 looks reasonable. (Test plan 30-5 with
~ = ().20, ~ = 0.30 and T = 589 is another attractive possibility) . A test
duration of about 900 hours is recommended.

~

The process of trading test length for testing risks is inherently somewhat
subjective. Actual problems of the type illustrated in this case should, of
course, explicity address time, cost, and other penalties associated with the
test.
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CASE STUDY NO. 8-7

Background

A program manager desires to demonstrate an MTBF of at least 200 at a 90%
confidence level.

Determine

The minimum test length required, and an evaluation of the proposed test plan.

Commentary

The correct interpretation of the background statement is that the MAV is 200
hours and the consumer’s risk is 10%.

Solution

The absolute minimum test length is that which permits making the desired
confidence statement with zero failures. Applying inequality 7. 10a we have:

0 ~ ~2T
‘a, 2r+2

200 = 2T

*:.1O,2

~ _ 200(4.60)
2

= 460.0 hours

of test exposure.

NOTE : Values of x: Zr+z are found in Appendix B, Table 5.
>

An MTBF of 200 can be demonstrated at a 90% confidence level by completing
46o.o hours of test exposure with zero failures.

To evaluate this proposed test plan, we will use an OC curve. To construct
the OC curve, we use equation 8.10.

P(ac

P(ac

e) =

e) =

Probability of acceptance for a given value of 6
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For T = 460.0 and C = O

P(ac 9) = e
-(460.0/0)

A few of the points for plotting the OC curve are tabulated below.

f.o

. 8

. 6

P(OC18)

. 4

. 2

c

1 0 0
2 0 0
5 0 0

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

w
0 . 0 1 0
0 . 1 0 0
0.398
0.631
0.794
0.858
0.891

I

---

I 000 2 0 0 0 3 0 0 0

8
M T B F  (!-f O U R S )

4 0 0 0 5000

8-38



Commentary

The curve shows that the proposed test plan does , in fact, achieve a con-
sumer’s risk of 10% for the MAV of 200 hours. Let us now examine the OC curve
for this test plan through the eyes of the contractor.

The curve shows that a system whose true MTBF is 650 hours has only a 50%
chance of passing the test, i.e., being accepted. In addition, for a system
to have a 90% chance of being accepted, it must have a true MTBF of 4,400
hours. In other words, for the contractor to obtain a producer’ s risk of 10%,
he needs to manufacture a system whose true MTBF is 4,400 hours. To have a
50/50 chance of passing the test, he needs to manufacture a system whose true
MTBF is 650 hours. The lesson to be learned here is that consideration must
be given to both the upper test value (SV) , the lower test value (MAV) , and
the risks associated with them in designing or evaluating a test plan- The
test planner or evaluator should be concerned with obtaining the minimal test
exposure plan which protects both the consumer and producer. To ignore either
aspect can be a dangerous policy.

b
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